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ABSTRACT 

In this report, a method for multiplying two elements from the Galois field 

GF(2ms) is presented. 

complexity. 

This method provides a tradeoff between speed and 



SERIAL-PARALLEL MULTIPLICATION IN GALOIS FIELDS 

1. MultiDlication over Subfields 

In this note, we present a method f o r  multiplying two elements from a 

Galois field over a subfield. 

contains the field GF(2') as a subfield and may be regarded as an extension 

field of GF(2'). Let a be a primitive element in GF(2ms). 

2 m- 1 
( l , a , a  , . . . , a  

element z in GF(2ms) can be expressed as a linear sum of a 

over GF(2S) as follows: 

Consider the Galois field GF(2ms). This field 

Then the set, 

) ,  forms a basis for GF(2ms) over the subfield GF(2'). Any 
0 2 m- 1 - 1,a,a , . . . ,a 

m- 1 
z = zooo + z a + z a2 + . . .  + z a 1 2 m- 1 

where z 

and the m-tuple (zo,zl, . . .  

(l,a,a , . . . ,  a ) .  The basis, (l,a, ..., a ) ,  is called the polynomial basis. 

The trace of an element z in GF(2ms) with respect to GF(2S) is defined as 

B GF(2') for 0 5 i < m. There is a one-to-one correspondence between z i 
) over GF(2') with respect to the basis 

3 'm- 1 
2 m- 1 m- 1 

2s 22s 2 (m-l>s 
Tm(z) z + z + z + . . .  + z 

which is an element in GF(2S) [p. 111, 11. The trace- has the following 

properties: 

1. For any a E GF(2') and z E GF(2ms), 

Tm(az) - a Tm(z); 
2. For any two elements y and z in GF(2ms), 

T,(y+z) = TJY) + Tm(z> * 

2 m- 1 With respect to the polynomial basis (l,a,a , . . . ,  a 1 ,  there exists another 

basis CB,,B,, * * - tBm-l ) for GF(2mS) over GF(2') such that 



‘ I  

with 0 I i, 3 < m. 

complementary) basis to (l,a,a , . . .,a 
The basis (/301/31,...,flm-l) is called the dual (or 

2 m- 1 1 over GF(2’). Any element z in GF(2ms) 

can be expressed in either of the following two forms: 

1. polvnomial form 
2 m- 1 

m - I a  z = a  + a a + a a  + . . . + a  0 1  2 
2. dual form 

z = b 0 0  B + blSl + b2B, + + bm-l I 

where a and bi are elements in GF(2’) for 0 5 i < m. These two forms can be i 

converted to each other as follows: 

1. ai - Tm(zBi), and 
2. bi - T,(za ) ,  

i 

for 0 I i < m. 

Now we consider multiplying two elements from GF(2ms). If one element is 

expressed in polynomial form and the other element is expressed in the dual 

form, then the multiplication can be achieved in a serial-parallel manner over 

the subfield GF(2’). This would give a trade-off between the complexity - and 
speed in the implementation of a multiplier. 

elements in GF(2ms). 

1 respectively. (l,a,u , . . . , a rn- ’ )  and its dual basis (fi,,B,, . .  .,Bm-l 

Let x and y be two arbitrary 

Express x and y in terms of the polynomial basis 

2 

( 4 )  

(5) 

2 m- 1 + ... + ~ ~ - ~ a  x = xo + x a + x a , 1 2 

Y - YoPo + YIP, + Y2B2 + - * + Ym-lPm-l 

S where x and y are in GF(2 ) for 0 5 i <  m. Consider the product z = xy and i i 
express z in dual form, 

z - xy 
- zopo + z /? + . . .  + z p 1 1  m-1 m-1 

where 

- 2 -  



Next w e  show how the coef f ic ien ts  of  z can be obtained from the c o e f f i -  

c i e n t s  of x and y i n  a serial  manner. I t  follows from (5) t o  (7)  t h a t  

i 
zi - Tm(xya 1 

Set t ing  i-0 i n  ( 8 ) ,  w e  obtain 

Since Tm(xBi) = xi f o r  0 I i C m, it follow from (9)  t h a t  

m - 1  Y m - 1  * 
zo = xoyo + xlyl + . .  . + x 

In  order t o  ob ta in - the  other  m - 1  coeff ic ients  of z ,  we define 

y ( i )  I yai , 

( i + l )  ~ y ( i ) a  Y 

Note t h a t  y (O)= y. We express both y(i)  and y (i+l) i n  dual forms: 

(i) (i) (i) (5) Y = Y o  Bo + Y 1  B, + . . '  + Y m - l B m - l  9 

(i+l) 
Bo + y i i + l )  B, + . . .  + Y m - 1  B m - 1  

( i+ l )  ( i + l )  
= yo Y 

(i) = Tm[y(i)aj] 
'j 

(i+l) Tm[y(i+l)aj] 
'j 

I t  follows from (12) t h a t ,  f o r  0 5 j < m , 

(i+l)J 
Tm[y ] (i+l) 

yJ 

where 



Expression (17) gives a relationship between the coefficients of y (i+l) and 

those of y(i). From (14) and (17), we obtain 

where 

The coefficient yLi) can be determined as follows 

From (18) and (20), we see that the coefficients of y (i+l) are completely deter- 

mined by the coefficients of y (1) . 

Now we return to the coefficients of z .  It follows from (7 )  that, for 

O ~ i < m - l ,  

Z i+l = T m [zai+’] 

= T m [ xya it’] = Tm[xy(i)a) 

m- 1 

j -0 

Combining (15) and (21),  we have 

Putting (lo), (17) to (22)  altogether, we see that the coefficients, z o ,  zl, 

. . . ,  z 

cients of x and y in a serial manner with m steps, 

of the product z - xy in dual form can be generated from the coeffi- m- 1 



where 

( 3 )  Ym (i) = Yo (i)T (Bgam) + y:i)Tm(/31am) + . . . + ym-l (i)T (/3 m-l am> . 

2.  Serial-Parallel MultiRlier 

From the expressions of (23) to (26), we see that, if we multiply two elem- 

ents x and y from GF(2ms) in mixed forms, the coefficients of the product z in 

dual form over GF(2') can be determined from the coefficients of x (in poly- 

nomial form) and y (in dual form) in a serial manner with m steps. At the i-th 

step, the coefficient 

S is formed. To form z m multiplications over GF(2 ) are required. These m 

multiplications can be carried out in a parallel (or direct) manner using either 

m GF(2') array multipliers or m look-up tables. The coefficients y 

i' 

(i-1) 
1 , 

(i-l) must-be formed separately. From (26), we have (i-1) 
y2 9 . . ' )  Ym-l 

S To form y (i-l), m multiplications over GF(2 ) are needed. 

plications involves a fixed element, Tm(Bia ) ,  from GF(2'). 

implementation is simpler. 

Each of these multi- 

As a result, the 
m 

m 

A general serial-parallel multiplier which 



realizes the multiplication algorithm presented in a previous section is shown 

in Figure 1. It consists of two parts, the top part forms the coefficients, 

zo ,  zl, ..., z 

(0) (1) (m-l), which is part of Figure 1 forms the coefficients, ym , ym , . . . ,  
called the yAi)-circuit. 

clock times). 

two arbitrary elements from GF(2’). 

multipliers, each multiplying a fixed element and an arbitrary element from 

GF(2’). 

of the product z, which is called the zi-circuit. The lower m- 1 

Ym 

The multiplication is completed in m steps (or in m 

The z -circuit requires m GF(2’) -multipliers, each multiplying i 

The yLi)-circuit requires m GF(2’)- 

The overall multiplier also needs two ms-input s-output adders. 

Suppose we implement the serial-parallel multiplier of Figure 1 by using 

GF(2’) array multipliers. 

inputs requires s2 AND gates to form the partial products, (s-1) 

Each GF(2’) array multiplier with two arbitrary 
2 two-input X-OR 

gates to add the partial products and then approximately (s-l)(l-l) two-input 
4 X-OR gates to reduce the sum to a s-bit symbol in GF(2’). A GF(2 ) array 

kultiplier with generating polynomial X +X+1 is shown in Figure 2. 4 A GF(2’) 

array multiplier with one fixed input requires no AND gates and less than 

(s-1) +(s-l)(l-l) two-input X-OR gates. Now consider the implementation of the 2 

serial-parallel multiplier using look-up tables (ROMs). For multiplying two 

arbitrary elements from GF(2’), a single look-up table requires a ROM of 2s 

inputs, s outputs and 22s s-bit words. For multiplying an arbitrary element 

with a fixed element, the look-up table requires a ROM of s inputs, s outputs 

and 2’ s-bit words. 

The multiplication of two elements from GF(2ms) can be achieved by using a 

single Berlekamp’s bit-serial multiplier [2]. This implementation is extremely 

simple, however it takes ms clock times to complete the multiplication, which is 

s times longer than the serial-parallel multiplier over GF(2‘) of Figure 1. 

speed is critical, we may multiply two elements from GF(2ms) directly by using a 

If 

- 6 -  



single GF(2ms) array multiplier or a single look-up table. 

array multiplier would require ( r n ~ ) ~  AND gates and approximately (ms-1)2 + 
(ms-l)(L-1) two-input X-OR gates where L is the number of terms in the gen- 

erating polynomial for GF(2ms). 

array multipliers, a total of m.s2 AND gates and no more than 2m[(~-1)~ + 
(s-l)(l-l)] two-input X-OR gates are needed. For large m (m 2 3 ) ,  a single 

GF(2ms) array multiplier requires much more AND and X-OR gates than the 

serial-parallel multiplier over GF(2'). 

A single GF(2ms) 

For the serial-parallel multiplier using GF(2') 

A single look-up table for direct multiplication of two arbitrary elements 
2ms from GF(2ms) requires a ROM of 2 ms inputs, ms outputs and 2 ms-bit -words. 

However, for the serial-parallel multiplier of Figure 1, it requires a total 

memory of m(22s+2S) s-bit words which is much smaller than 2 2ms for m 1 2 .  

In summary, the serial-parallel multiplication over a subfield presented in 

this note provides a trade-off between speed and complexity. 
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Figure 1 A GF(2ms) serial-parallel multiplier over GF(2') 
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Figure 2 A GF(Z4) multiplier 


